

ACADEMIC
CURRICULUM VITAE

1. Name - Surname: Abraham Deka

2. Title: Asst. Prof. Dr.

3. Educational Background:

Degree	Department/Program	University	Year
PhD	Economics	Near East University	2024
Master's	Banking and Finance	Near East University	2019
Bachelor's	Banking and Finance	Near East University	2017

4. Master's / PhD Thesis

4.1.Master's Thesis Title and Thesis Advisor(s):

Title: Forecasting Foreign Exchange Rate And Consumer Price Index With Arima Model: The Case Of Turkey.

Supervisor: Asst. Prof. Dr. Nil Gunsel Resatoglu.

4.2.PhD Thesis Title and Advisor(s):

Title: The role of effective capital, renewable energy, and energy efficiency on sustainable development – the case of the EU countries

Supervisors: Prof. Dr. Huseyin Ozdeser and Assoc. Prof. Dr. Mehdi Seraj.

5. Academic Titles:

04/09/2024 – Asst. Prof. Dr.

6. Supervised Master's and PhD Theses:

6.1. Master's Theses

Advancing renewable energy production with green financial technology. Do institutional quality, exchange rate and the overall inflation rate matter. Annette Siakamba. January 2025

6.2. PhD Theses

a) Juxtaposing the role of Green Financial Management on Technological innovation, Human Capital, and Environmental Social Governance. Theodorah Jarijari. [In progress](#)

b) Institutional Drivers of the Central Bank Digital Currency Adoption in Nigeria: The Role of Regulatory and Financial Institutions. Rabiu Abubakar. [In progress](#)

7. Publications

7.1. Articles Published in International Peer-Reviewed Journals (SCI,SSCI, AHCI, ESCI, Scopus)

1. **Deka, A.** (2025). The role of green finance and trade openness on environmental sustainability – new evidence with the Load Capacity Factor, *Euro-Mediterranean Journal for Environmental Integration* [Accepted]
2. **Deka, A.**, Kadir, M. O. & Ozdeser, H. (2025). The role of natural resources and governance in alleviating energy poverty – evidence with the MMQR method, *Mineral Economics* [Accepted]
3. Nwekwo, T. G. N., Deka, A. & Şahoğlu, H. S. (2025). Covid-19 Pandemic Governance and Impact on Migration Across Sub-Saharan Africa, *Humanities and Social Sciences Communications* [Accepted]
4. **Deka, A.**, Kipulu, J. K., & Dube, S. (2025). Juxtaposing the influence of nuclear energy, human development index and research & development on economic performance of the European Union countries. *Environmental Progress & Sustainable Energy*, 44 (2), e14565.
5. Jarijari, T., **Deka, A.**, & Cavusoglu, B. (2025). The synergistic role of natural resources, green finance and green technological innovations in promoting environmental sustainability in Sub-Saharan Africa. *Resources Policy*, 105, 105598.
6. Jarijari, T., **Deka, A.**, & Cavusoglu, B. (2025). The synergistic role of natural resources, low carbon energy and technological innovation in promoting environmental sustainability: the evidence of BRICS economies. *International Journal of Environmental Science and Technology*, 1-16.
7. **Deka, A.**, Bako, S., & Ozdeser, H. (2025). Are natural resources a curse or a blessing in the developing nations? New evidence from the Sub-Saharan African countries. *Mineral Economics*, 1-12.
8. Kadir, M. O., **Deka, A.**, Ozdeser, H., & Seraj, M. (2025). The role of natural resources rent, energy efficiency and governance in reducing pollution–New evidence with MMQR method. *Environmental Progress & Sustainable Energy*, 44 (1), e14510.
9. **Deka, A.**, Efe-Onakpojeruo, C. C., & Özdeşer, H. (2025). Enhancing access to clean electricity with green finance and natural resources rent—the case of sub-Saharan

African rural areas. *International Journal of Energy Sector Management*, (head-of-print).

10. **Deka, A.**, Efe-Onakpojeruo, C. C., & Ozdeser, H. (2025). Capitalizing on technological innovations and natural resources rent in alleviating ecological footprint in the Sub-Saharan African countries. *Resources Policy*, 101, 105462.
11. **Deka, A.** (2025). Juxtaposing the role of effective capital, energy efficiency and technological innovations on environmental sustainability in the EU countries. *Management of Environmental Quality: An International Journal*.
12. Cavusoglu, B., Saliminezhad, A., & **Deka, A.** (2024, April). Promoting Environmental Quality with Financial Development in Iran: An Asymmetric Analysis with NARDL Approach. In *International Conference on Smart Environment and Green Technologies* (pp. 169-176). Cham: Springer Nature Switzerland.
13. **Deka, A.**, Dube, S., & Cavusoglu, B. (2024, April). The Role of Technological Innovation and Trade Openness in Promoting Environmental Sustainability in the GCC Nations. In *International Conference on Smart Environment and Green Technologies* (pp. 485-492). Cham: Springer Nature Switzerland.
14. **Deka, A.**, Abshir, H. M., & Ozdeser, H. (2024). The influence of effective capital, technological innovation and energy efficiency on environmental sustainability on the European region. *International Journal of Environmental Science and Technology* , 1-14.
15. Kadir, MO, **Deka, A.**, Seraj, M., & Ozdeser, H. (2024). Capitalizing on natural resources rent and renewable energy in enhancing economic growth—New evidence with MMQR method. In *Natural Resources Forum*. Oxford, UK: Blackwell Publishing Ltd.
16. **Deka, A.** (2024). The role of natural resources rent, trade openness and technological innovations on environmental sustainability—Evidence from resource-rich african nations. *Resources Policy*, 98, 105364.
17. **Deka, A.**, & Efe-Onakpojeruo, C. C. (2024). The role of green finance and natural resources rent in eradicating energy poverty—the case of the Sub-Saharan African countries. *Development and Sustainability in Economics and Finance*, 2, 100032.
18. **Deka, A.** (2024). The role of investment in energy and industry value added in the presence of financial resources in fostering sustainable economic growth of China. *SN Business & Economics*, 4 (9), 104.
19. Alabi, J. B., & **Deka, A.** (2024). Unlocking the sustainable tourism development in the USA: what are the effects of carbon emission?. *Management of Environmental Quality: An International Journal*, 35(8), 1977-1993.
20. Akpanke, T. A., **Deka, A.**, Ozdeser, H., & Seraj, M. (2024). Ecological footprint in the OECD countries: do energy efficiency and renewable energy matter?. *Environmental Science and Pollution Research*, 31(10), 15289-15301.
<https://link.springer.com/article/10.1007/s11356-024-32151-1> (Q1; SCI-E; SCI)

21. Shuayb, A. S. S., Dube, S., Khalifa, W., **Deka, A.**, Kareem, P. H., & Cavusoglu, B. (2024, April). The impact of natural resources rent, renewable energy, and governance on the environmental sustainability—Evidence from resource-rich countries. *In Natural Resources Forum*. Oxford, UK: Blackwell Publishing Ltd. DOI:10.1111/1477-8947.12459 (Q1; SSCI)
22. **Deka, A.**, Ozdeser, H., & Seraj, M. (2023). The impact of primary energy supply, effective capital and renewable energy on economic growth in the EU-27 countries. A dynamic panel GMM analysis. *Renewable Energy*, 219, 119450. <https://doi.org/10.1016/j.renene.2023.119450> (Q1; SCI-E; SCI)
23. **Deka, A.**, Banga, C. & Rukani, S. (2023). The effects of energy efficiency, renewable energy and tourism development on the environment in Sub-Saharan Africa. *International Journal of Environmental Science and Technology*. 1-12. <https://doi.org/10.1007/s13762-023-05237-5> (Q1; SCI-E; SCI)
24. **Deka, A.** (2023). The effect of forest resources, energy efficiency, and renewable energy on environmental degradation—a comparative analysis of the less-and high-emitter sub-Saharan African countries. *Environmental Science and Pollution Research*, 30(48), 105781-105792. [10.1007/s11356-023-29865-z](https://doi.org/10.1007/s11356-023-29865-z) (Q1; SCI-E; SCI)
25. **Deka, A.**, Ozdeser, H., & Seraj, M. (2023). The effect of GDP, renewable energy and total energy supply on carbon emissions in the EU-27: new evidence from panel GMM. *Environmental Science and Pollution Research*, 30(10), 28206-28216. DOI: [10.1007/s11356-022-24188-x](https://doi.org/10.1007/s11356-022-24188-x) (Q1; SCI-E; SCI)
26. **Deka, A.**, Bako, S. Y., Ozdeser, H., & Seraj, M. (2023). The impact of energy efficiency in reducing environmental degradation: does renewable energy and forest resources matter?. *Environmental Science and Pollution Research*, 30(37), 86957-86972. [10.1007/s11356-023-28434-8](https://doi.org/10.1007/s11356-023-28434-8) (Q1; SCI-E; SCI)
27. **Deka, A.**, Ozdeser, H., Seraj, M., & Kadir, M. O. (2023). Does energy efficiency, renewable energy and effective capital promote economic growth in the emerging 7 economies? New evidence from CS-ARDL model. *Future Business Journal*, 9(1), 52. [10.1186/s43093-023-00235-y](https://doi.org/10.1186/s43093-023-00235-y) (ESCI; Scopus)
28. **Deka, A.**, Ozdeser, H., Cavusoglu, B., Seraj, M., & Tursoy, T. (2023). Exchange rate stability in the emerging economies: does renewable energy play a role—a panel data analysis. *Environmental Science and Pollution Research*, 30(9), 23668-23677. [10.1007/s11356-022-23911-y](https://doi.org/10.1007/s11356-022-23911-y) (Q1; SCI-E; SCI)
29. **Deka, A.**, Ozdeser, H., & Seraj, M. (2023). The impact of oil prices, financial development and economic growth on renewable energy use. *International Journal of Energy Sector Management*. [10.1108/IJESM-09-2022-0008](https://doi.org/10.1108/IJESM-09-2022-0008) (Q2; ESCI; Scopus)
30. Akpanke, T. A., **Deka, A.**, Ozdeser, H., & Seraj, M. (2023). The role forest resources, energy efficiency, and renewable energy in promoting environmental quality. *Environmental Monitoring and Assessment*, 195(9), 1071. [10.1007/s10661-023-11617-8](https://doi.org/10.1007/s10661-023-11617-8) (Q2; SCI-E; SCI)

31. Mukaro, C. T., **Deka, A.**, & Rukani, S. (2023). The Influence of Intellectual Capital on Organizational Performance. *Future Business Journal*, 9(1), 1-14. [10.1186/s43093-023-00208-1](https://doi.org/10.1186/s43093-023-00208-1) (ESCI; Scopus).

32. Kadir, M. O., **Deka, A.**, Ozdeser, H., Seraj, M., & Turuc, F. (2023). The impact of energy efficiency and renewable energy on GDP growth: new evidence from RALS-EG cointegration test and QARDL technique. *Energy Efficiency*, 16(5), 46., DOI : 10.1007/s12053-023-10130-8 (Q2; SSCI)

33. Banga, C., **Deka, A.**, Ringim, S. H., Mustapha, A. S., Özdeşer, H., & Kilic, H. (2023). The nexus between tourism development, environmental quality and economic growth. Does renewable energy help in achieving carbon neutrality goal?. *International Journal of Energy Sector Management*. 10.1108/IJESM-07-2022-0011 (Q2; ESCI; Scopus)

34. Akpanke, T. A., **Deka, A.**, Ozdeser, H., & Seraj, M. (2023). Does foreign direct investment promote renewable energy use? An insight from West African countries. *Renewable Energy Focus*, 44, 124-131. DOI: [10.1016/j.ref.2022.11.007](https://doi.org/10.1016/j.ref.2022.11.007) (Q2; ESCI; Scopus)

35. **Deka, A.**, Cavusoglu, B., Dube, S., Rukani, S., & Kadir, M. O. (2023). Examining the effect of renewable energy on exchange rate in the emerging economies with dynamic ARDL bounds test approach. *Renewable Energy Focus*, 44, 237-243. DOI: [10.1016/j.ref.2023.01.003](https://doi.org/10.1016/j.ref.2023.01.003) (Q2; ESCI; Scopus)

36. Banga, C., **Deka, A.**, Kilic, H., Ozturen, A., & Ozdeser, H. (2022). The role of clean energy in the development of sustainable tourism: does renewable energy use help mitigate environmental pollution? A panel data analysis. *Environmental Science and Pollution Research*, 1-11. DOI: [10.1007/s11356-022-19991-5](https://doi.org/10.1007/s11356-022-19991-5) (Q1; SCI-E; SCI)

37. **Deka, A.**, Cavusoglu, B., & Dube, S. (2022). Does renewable energy use enhance exchange rate appreciation and stable rate of inflation?. *Environmental Science and Pollution Research*, 29(10), 14185-14194. DOI: [10.1007/s11356-021-16758-2](https://doi.org/10.1007/s11356-021-16758-2) (Q1; SCI-E; SCI)

38. **Deka, A.**, & Cavusoglu, B. (2022). Examining the role of renewable energy on the foreign exchange rate of the OECD economies with dynamic panel GMM and Bayesian VAR model. *SN Business & Economics*, 2(9), 1-19. DOI: [10.1007/s43546-022-00305-3](https://doi.org/10.1007/s43546-022-00305-3)

39. **Deka, A.**, & Dube, S. (2021). Analyzing the causal relationship between exchange rate, renewable energy and inflation of Mexico (1990–2019) with ARDL bounds test approach. *Renewable Energy Focus*, 37, 78-83. DOI: [10.1016/j.ref.2021.04.001](https://doi.org/10.1016/j.ref.2021.04.001) (Q2; ESCI; Scopus)

7.2. Articles Published in Other International Peer-Reviewed Journals

1. **Deka, A.**, & Resatoglu, N. G. (2019). Forecasting Foreign Exchange Rate And Consumer Price Index With Arima Model: The Case Of Turkey. *International Journal*

of Scientific Research and Management, 7(08), EM-2019. <https://doi.org/10.18535/ijsrn/v7i8.em01>

2. Waffy, D, J. I. & Deka, A. (2024). The effect of Human Resource Management on employee Performance–A Systematic Literature Review. Journal of Human Resource Management, 27(1), 98-108.

8. Art and Design Activities: NO

9. Projects: NO

10. Administrative Responsibilities:

Quality Committee, Faculty of Economics and Administrative Sciences

11. Memberships in Scientific and Professional Organizations:

a) Scientific Editor

➤ Next Journals [Energy, Sustainability, Materials, Nanotechnology]

b) Associate Editor:

➤ SN Business and Economics (Scopus)

➤ Frontiers in Sustainability (ESCI)

b) Guest Editor:

➤ Future Business Journal (ESCI)

➤ Discover Environment Journal (Scopus)

➤ Green Technology, Resilience and Sustainability Journal

d) Reviewer

12. Awards

Research Award (Awarded in May 2025 at NEU)

Young Researcher (Awarded in May 2024 at NEU)

Young Researcher Encouragement Award (Awarded in May 2023 at NEU)

Faculty Salutatorian (Awarded in June 2017 at NEU)

13. Undergraduate and Graduate Courses Taught in the Last Two Years

Academic Year	Semester	Course Name	Weekly Hours		Number of Students
			Theoretical	Practical	
2022 - 2023	Fall	Mathematical Economics (ECO430)	2	1	15
	Fall	Game Theory (ECO440)	2	1	17
	Fall	Information and Knowledge Society (IKM517+617)	2	1	14
	Spring	Macroeconomics (EAS202)	2	1	104
	Spring	Macroeconomics (ECO502)	2	1	7
	Spring	Economics of Strategy and Innovation (IKM531+631)	2	1	12
	Spring	Environmental Economics (ECO314)	2	1	11
2024 - 2025	Fall	Macroeconomics (EAS202)	2	1	97
	Fall	International Economics (ECO401)	2	1	12
	Fall	Managerial Economics (ECO400)	2	1	4
	Fall	Economics of Imperfect Competition (ECO315)	2	1	7
	Fall	Mathematical Economics (ECO530+530)	2	1	5
	Fall	Information and Knowledge Society (IKM517+617)	2	1	5
	Spring	Macroeconomics (EAS202)	2	1	54
	Spring	Labour Economics (ECO416)	2	1	6
	Spring	Environmental Economics (ECO314)	2	1	7
	Spring	Macroeconomics (ECO502)	2	1	6
	Spring	Economics of Strategy and Innovation (IKM531+631)	2	1	5